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Novel two-step solution phase protocols for the synthesis of dihydroquinazolines and fused dihydroqui-
nazoline-benzodiazepine tetracycles are reported. The methodology employs the Ugi reaction to assem-
ble the desired diversity and acid treatment enables ring-closing transformations. The protocols are
further facilitated by the use of microwave irradiation and n-butyl isocyanide to control the rate of each
ring-forming transformation.
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1. Introduction

The elucidation of the complete human genome in 20011 has re-
sulted in a dramatic increase in the demand for the identification of
small molecules to validate the pharmacological potential of new
macromolecular targets.2,3 In particular, isonitrile-based method-
ologies,4–6 followed by a variety of secondary ring-forming trans-
formations, have shown great utility in concisely producing
highly functionalized and drug-like scaffolds with high iterative
efficiency potential.7–9 Methodologies developed in this laboratory
have proven quite productive, delivering examples where initial
hits have progressed into clinical trials for the treatment of both
HIV infection10,11 and pre-term labor,12–15 importantly without
the need to ‘scaffold hop’. Recently, we have reported a contrite
two-step synthesis of triazabenzulenones16 that represents the
first post-condensation Ugi modification employing two internal
amino nucleophiles and a subsequent report that utilized micro-
wave irradiation with n-butyl isonitrile in place of a traditional ‘de-
signer convertible isonitrile,17 to form benzodiazepines and
diketopiperazines. Herein, we report two-step syntheses that yield
dihydroquinazolines 1 and 2 and fused dihydroquinazoline-benzo-
diazepine tetracycles 3 and 4, Figure 1. The tetracyclic scaffolds
represent a second example of a post-condensation Ugi modifica-
tion employing two internal amino nucleophiles and all four syn-
theses rely on the reduced reactivity of an n-butyl amide
carbonyl derived from n-butyl isonitrile relative to traditional con-
vertible isonitriles to ensure the correct sequence of ring-forming
events. It was envisioned that the dihydroquinazoline core
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could be produced in two steps: an Ugi reaction with mono-Boc
protected 2-aminobenzylamines 5, supporting aldehydes 8, non-
convertible isonitriles 7, and carboxylic acids 6 to yield the conden-
sation product 9 followed by acid-promoted deprotection and
cyclization. Both the 1,4-dihydroquinazoline (Scheme 1a, (10)
and 3,4-dihydroquinazoline (Scheme 1b, 12) scaffolds can be pro-
duced from the corresponding mono-protected 2-aminobenzyl-
amine input 5 or 11. We have previously demonstrated a similar
acid-promoted dehydration of an Ugi condensation product to gen-
erate an aromatic benzimidazole core16,18 and this Letter expands
the use of such methodology to obtain non-aromatic bicyclic rings
such as the dihydroquinazolines 1 and 2 with significantly differ-
ent physicochemical properties and spacial positioning of decorat-
ing functionality.

Optimal yields for the Ugi reaction were found to occur via
pre-formation of the Schiff base in methanol for 30 min, followed
by addition of the isonitrile and carboxylic acid inputs with sub-
sequent microwave irradiation at 100 �C for 10 min (isolated
yields 48–85%). The Ugi product was then treated with 10%
TFA/DCE (irradiated at 120 �C) to form the desired quinazoline
scaffolds 10 and 12 core in good yield (46–65% �isolated overall
yield for two steps).19 With this protocol in hand, it was hypoth-
esized that addition of a second protected amine, through the use
of an N-Boc-protected anthranilic acid 13, would enable the for-
mation of novel fused dihydroquinazoline-benzodiazepines
(Schemes 2a and 2b, 14 and 15) after deprotection and two
sequential cyclization steps. However, addition of the bulky
Boc-protected amine group resulted in a dramatic decrease in
the yield of the Ugi reaction (<5%).

This effect was also observed in the 1,4-quinazoline series
with 2-chlorobenzoic acid (Fig. 3, 30). Circumventing this problem,
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Figure 1. Representative dihydroquinazoline bicyclic and tetracyclic scaffolds.
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pre-formation of the Schiff base in toluene under microwave
irradiation with removal of water (MgSO4) provided the Schiff base
in quantitative yields. Subsequent reaction in MeOH afforded the
desired Ugi product in 44% yield [note: observed by-products arose
from methanol addition to the Schiff base and the Passerini
reaction]. Interestingly, reactions in trifluoroethanol yielded simi-
lar results—a strategy that is often successful in reducing solvent
participation in the Ugi reaction. A modest improvement in yield
was observed by pre-forming the Schiff base in dichloromethane
in the presence of MgSO4 (microwave, 120 �C). Following the
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addition of supporting reagents, the reaction was irradiated at
120 �C for 10 min with an acceptable improvement in yield (56%,
Scheme 2a). Removal of the two Boc groups, cyclo-dehydration
to the dihydroquinazoline core, and concomitant cyclization onto
the n-butyl amide afforded the desired fused 1,4-dihydroquinazo-
line-benzodiazepines 14 and 15 in acceptable yields upon simple
acid treatment and microwave irradiation.20 Not surprisingly, the
major side products of the cascade reaction were the benzodiaze-
pine trifluoroacetamide 16 (24% yield) and the bicyclic trifluoroac-
etamide 17 (13% yield), Figure 2.

The scope of the methodology was evaluated with a selection
of different reagents. Cyclization reactions of purified Ugi prod-
ucts were run in series on a Biotage Initiator 8 microwave and
were purified in a sequential manner on a Biotage Isolera 4 sys-
tem utilizing neutralized silica gel columns. The observed high
polarity of dihydroquinazolines can be attributed to their rela-
tively high pKa values (Table 1). Thirteen examples are presented
18 through 30 containing all four dihydroquinazoline cores with
isolated overall yields for the two-step procedure ranging from
21% to 64% Figure 3.

To demonstrate scaffold uniqueness, virtual libraries for 1
through 4 were enumerated (comprising scaffold 1—168 com-
pounds; 2—168 compounds, 3—144 compounds, 4—48 com-
pounds) and compared with the 375,000 compounds in the NIH
molecular libraries small molecule repository (MLSMR). A total of
1043 nearest neighbors were indentified and a principle compo-
nent analysis21 clearly demonstrates the unique diversity space
occupied by expanded libraries of the four scaffolds described
herein Figure 4.

In summary, we have reported concise two-step solution
phase syntheses that afford bicyclic dihydroquinazolines and
fused tetracyclic dihydroquinazoline-benzodiazepines, which are
under-represented in the literature and the MLSMR.22 With ame-
nability to high-throughput solution phase synthesis, it is ex-
pected that the methodology will be embraced by the lead
generation community.
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